Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
PLOS global public health ; 2(5), 2022.
Article in English | EuropePMC | ID: covidwho-2276200

ABSTRACT

Non-pharmaceutical interventions have been widely employed to control the COVID-19 pandemic. Their associated effect on SARS-CoV-2 transmission have however been unequally studied across regions. Few studies have focused on the Gulf states despite their potential role for global pandemic spread, in particular in the Kingdom of Saudi Arabia through religious pilgrimages. We study the association between NPIs and SARS-CoV-2 transmission in the Kingdom of Saudi Arabia during the first pandemic wave between March and October 2020. We infer associations between NPIs introduction and lifting through a spatial SEIR-type model that allows for inferences of region-specific changes in transmission intensity. We find that reductions in transmission were associated with NPIs implemented shortly after the first reported case including Isolate and Test with School Closure (region-level mean estimates of the reduction in R0 ranged from 25–41%), Curfew (20–70% reduction), and Lockdown (50–60% reduction), although uncertainty in the estimates was high, particularly for the Isolate and Test with School Closure NPI (95% Credible Intervals from 1% to 73% across regions). Transmission was found to increase progressively in most regions during the last part of NPI relaxation phases. These results can help informing the policy makers in the planning of NPI scenarios as the pandemic evolves with the emergence of SARS-CoV-2 variants and the availability of vaccination.

2.
PLOS Glob Public Health ; 2(5): e0000237, 2022.
Article in English | MEDLINE | ID: covidwho-1854960

ABSTRACT

Non-pharmaceutical interventions have been widely employed to control the COVID-19 pandemic. Their associated effect on SARS-CoV-2 transmission have however been unequally studied across regions. Few studies have focused on the Gulf states despite their potential role for global pandemic spread, in particular in the Kingdom of Saudi Arabia through religious pilgrimages. We study the association between NPIs and SARS-CoV-2 transmission in the Kingdom of Saudi Arabia during the first pandemic wave between March and October 2020. We infer associations between NPIs introduction and lifting through a spatial SEIR-type model that allows for inferences of region-specific changes in transmission intensity. We find that reductions in transmission were associated with NPIs implemented shortly after the first reported case including Isolate and Test with School Closure (region-level mean estimates of the reduction in R0 ranged from 25-41%), Curfew (20-70% reduction), and Lockdown (50-60% reduction), although uncertainty in the estimates was high, particularly for the Isolate and Test with School Closure NPI (95% Credible Intervals from 1% to 73% across regions). Transmission was found to increase progressively in most regions during the last part of NPI relaxation phases. These results can help informing the policy makers in the planning of NPI scenarios as the pandemic evolves with the emergence of SARS-CoV-2 variants and the availability of vaccination.

3.
BMC Med ; 20(1): 51, 2022 02 07.
Article in English | MEDLINE | ID: covidwho-1673913

ABSTRACT

BACKGROUND: The Kingdom of Saudi Arabia (KSA) quickly controlled the spread of SARS-CoV-2 by implementing several non-pharmaceutical interventions (NPIs), including suspension of international and national travel, local curfews, closing public spaces (i.e., schools and universities, malls and shops), and limiting religious gatherings. The KSA also mandated all citizens to respect physical distancing and to wear face masks. However, after relaxing some restrictions during June 2020, the KSA is now planning a strategy that could allow resuming in-person education and international travel. The aim of our study was to evaluate the effect of NPIs on the spread of the COVID-19 and test strategies to open schools and resume international travel. METHODS: We built a spatial-explicit individual-based model to represent the whole KSA population (IBM-KSA). The IBM-KSA was parameterized using country demographic, remote sensing, and epidemiological data. A social network was created to represent contact heterogeneity and interaction among age groups of the population. The IBM-KSA also simulated the movement of people across the country based on a gravity model. We used the IBM-KSA to evaluate the effect of different NPIs adopted by the KSA (physical distancing, mask-wearing, and contact tracing) and to forecast the impact of strategies to open schools and resume international travels. RESULTS: The IBM-KSA results scenarios showed the high effectiveness of mask-wearing, physical distancing, and contact tracing in controlling the spread of the disease. Without NPIs, the KSA could have reported 4,824,065 (95% CI: 3,673,775-6,335,423) cases by June 2021. The IBM-KSA showed that mandatory mask-wearing and physical distancing saved 39,452 lives (95% CI: 26,641-44,494). In-person education without personal protection during teaching would have resulted in a high surge of COVID-19 cases. Compared to scenarios with no personal protection, enforcing mask-wearing and physical distancing in schools reduced cases, hospitalizations, and deaths by 25% and 50%, when adherence to these NPIs was set to 50% and 70%, respectively. The IBM-KSA also showed that a quarantine imposed on international travelers reduced the probability of outbreaks in the country. CONCLUSIONS: This study showed that the interventions adopted by the KSA were able to control the spread of SARS-CoV-2 in the absence of a vaccine. In-person education should be resumed only if NPIs could be applied in schools and universities. International travel can be resumed but with strict quarantine rules. The KSA needs to keep strict NPIs in place until a high fraction of the population is vaccinated in order to reduce hospitalizations and deaths.


Subject(s)
COVID-19 , Contact Tracing , Humans , Quarantine , SARS-CoV-2 , Saudi Arabia/epidemiology
4.
IEEE Rev Biomed Eng ; 14: 16-29, 2021.
Article in English | MEDLINE | ID: covidwho-1501334

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading rapidly around the world, resulting in a massive death toll. Lung infection or pneumonia is the common complication of COVID-19, and imaging techniques, especially computed tomography (CT), have played an important role in diagnosis and treatment assessment of the disease. Herein, we review the imaging characteristics and computing models that have been applied for the management of COVID-19. CT, positron emission tomography - CT (PET/CT), lung ultrasound, and magnetic resonance imaging (MRI) have been used for detection, treatment, and follow-up. The quantitative analysis of imaging data using artificial intelligence (AI) is also explored. Our findings indicate that typical imaging characteristics and their changes can play crucial roles in the detection and management of COVID-19. In addition, AI or other quantitative image analysis methods are urgently needed to maximize the value of imaging in the management of COVID-19.


Subject(s)
COVID-19/diagnosis , Artificial Intelligence , COVID-19/diagnostic imaging , Humans , Lung/diagnostic imaging , Lung/virology , Positron Emission Tomography Computed Tomography/methods , SARS-CoV-2/pathogenicity , Tomography, X-Ray Computed/methods , Ultrasonography/methods
5.
Int J Environ Res Public Health ; 18(16)2021 08 17.
Article in English | MEDLINE | ID: covidwho-1360753

ABSTRACT

AIM: Many governments in East and Southeast Asia responded promptly and effectively at the onset of the COVID-19 pandemic. Synthesizing and analyzing these responses is vital for disease control evidence-based policymaking. METHODS: An extensive review of COVID-19 control measures was conducted in selected Asian countries and subregions, including Mainland China, Hong Kong, Taiwan, South Korea, Singapore, Japan, and Vietnam from 1 January to 30 May 2020. Control measures were categorized into administrative, public health, and health system measures. To evaluate the stringency and timeliness of responses, we developed two indices: the Initial Response Index (IRI) and the Modified Stringency Index (MSI), which builds on the Oxford COVID-19 Government Response Tracker (OxCGRT). RESULTS: Comprehensive administrative, public health, and health system control measures were implemented at the onset of the outbreak. Despite variations in package components, the stringency of control measures across the study sites increased with the acceleration of the outbreak, with public health control measures implemented the most stringently. Variations in daily average MSI scores are observed, with Mainland China scoring the highest (74.2), followed by Singapore (67.4), Vietnam (66.8), Hong Kong (66.2), South Korea (62.3), Taiwan (52.1), and Japan (50.3). Variations in IRI scores depicting timeliness were higher: Hong Kong, Taiwan, Vietnam, and Singapore acted faster (IRI > 50.0), while Japan (42.4) and Mainland China (4.2) followed. CONCLUSIONS: Timely setting of stringency of the control measures, especially public health measures, at dynamically high levels is key to optimally controlling outbreaks.


Subject(s)
COVID-19 , Pandemics , Government , Hong Kong/epidemiology , Humans , SARS-CoV-2
6.
IEEE J Biomed Health Inform ; 25(7): 2353-2362, 2021 07.
Article in English | MEDLINE | ID: covidwho-1203809

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19) has caused considerable morbidity and mortality, especially in patients with underlying health conditions. A precise prognostic tool to identify poor outcomes among such cases is desperately needed. METHODS: Total 400 COVID-19 patients with underlying health conditions were retrospectively recruited from 4 centers, including 54 dead cases (labeled as poor outcomes) and 346 patients discharged or hospitalized for at least 7 days since initial CT scan. Patients were allocated to a training set (n = 271), a test set (n = 68), and an external test set (n = 61). We proposed an initial CT-derived hybrid model by combining a 3D-ResNet10 based deep learning model and a quantitative 3D radiomics model to predict the probability of COVID-19 patients reaching poor outcome. The model performance was assessed by area under the receiver operating characteristic curve (AUC), survival analysis, and subgroup analysis. RESULTS: The hybrid model achieved AUCs of 0.876 (95% confidence interval: 0.752-0.999) and 0.864 (0.766-0.962) in test and external test sets, outperforming other models. The survival analysis verified the hybrid model as a significant risk factor for mortality (hazard ratio, 2.049 [1.462-2.871], P < 0.001) that could well stratify patients into high-risk and low-risk of reaching poor outcomes (P < 0.001). CONCLUSION: The hybrid model that combined deep learning and radiomics could accurately identify poor outcomes in COVID-19 patients with underlying health conditions from initial CT scans. The great risk stratification ability could help alert risk of death and allow for timely surveillance plans.


Subject(s)
COVID-19 , Deep Learning , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Aged , Aged, 80 and over , COVID-19/diagnostic imaging , COVID-19/mortality , Comorbidity , Female , Humans , Imaging, Three-Dimensional , Lung/diagnostic imaging , Male , Middle Aged , Prognosis , ROC Curve , Retrospective Studies , SARS-CoV-2
7.
IEEE J Biomed Health Inform ; 24(12): 3585-3594, 2020 12.
Article in English | MEDLINE | ID: covidwho-917727

ABSTRACT

OBJECTIVE: The coronavirus disease 2019 (COVID-19) is rapidly spreading inside China and internationally. We aimed to construct a model integrating information from radiomics and deep learning (DL) features to discriminate critical cases from severe cases of COVID-19 using computed tomography (CT) images. METHODS: We retrospectively enrolled 217 patients from three centers in China, including 82 patients with severe disease and 135 with critical disease. Patients were randomly divided into a training cohort (n = 174) and a test cohort (n = 43). We extracted 102 3-dimensional radiomic features from automatically segmented lung volume and selected the significant features. We also developed a 3-dimensional DL network based on center-cropped slices. Using multivariable logistic regression, we then created a merged model based on significant radiomic features and DL scores. We employed the area under the receiver operating characteristic curve (AUC) to evaluate the model's performance. We then conducted cross validation, stratified analysis, survival analysis, and decision curve analysis to evaluate the robustness of our method. RESULTS: The merged model can distinguish critical patients with AUCs of 0.909 (95% confidence interval [CI]: 0.859-0.952) and 0.861 (95% CI: 0.753-0.968) in the training and test cohorts, respectively. Stratified analysis indicated that our model was not affected by sex, age, or chronic disease. Moreover, the results of the merged model showed a strong correlation with patient outcomes. SIGNIFICANCE: A model combining radiomic and DL features of the lung could help distinguish critical cases from severe cases of COVID-19.


Subject(s)
COVID-19/physiopathology , COVID-19/diagnostic imaging , COVID-19/virology , Cohort Studies , Female , Humans , Male , Middle Aged , SARS-CoV-2/isolation & purification , Severity of Illness Index , Tomography, X-Ray Computed
8.
IEEE J Biomed Health Inform ; 24(12): 3576-3584, 2020 12.
Article in English | MEDLINE | ID: covidwho-894713

ABSTRACT

Since its outbreak in December 2019, the persistent coronavirus disease (COVID-19) became a global health emergency. It is imperative to develop a prognostic tool to identify high-risk patients and assist in the formulation of treatment plans. We retrospectively collected 366 severe or critical COVID-19 patients from four centers, including 70 patients who died within 14 days (labeled as high-risk patients) since their initial CT scan and 296 who survived more than 14 days or were cured (labeled as low-risk patients). We developed a 3D densely connected convolutional neural network (termed De-COVID19-Net) to predict the probability of COVID-19 patients belonging to the high-risk or low-risk group, combining CT and clinical information. The area under the curve (AUC) and other evaluation techniques were used to assess our model. The De-COVID19-Net yielded an AUC of 0.952 (95% confidence interval, 0.928-0.977) on the training set and 0.943 (0.904-0.981) on the test set. The stratified analyses indicated that our model's performance is independent of age, sex, and with/without chronic diseases. The Kaplan-Meier analysis revealed that our model could significantly categorize patients into high-risk and low-risk groups (p < 0.001). In conclusion, De-COVID19-Net can non-invasively predict whether a patient will die shortly based on the patient's initial CT scan with an impressive performance, which indicated that it could be used as a potential prognosis tool to alert high-risk patients and intervene in advance.


Subject(s)
COVID-19/physiopathology , Deep Learning , Models, Theoretical , COVID-19/diagnosis , COVID-19/virology , Female , Humans , Male , Risk Factors , SARS-CoV-2/isolation & purification
9.
coronavirus disease 2019 diagnosis pneumonia radiomics ; 2020(Science China Information Sciences)
Article | WHO COVID | ID: covidwho-690468

ABSTRACT

The Coronavirus disease 2019 (COVID-19) is raging across the world. The radiomics, which explores huge amounts of features from medical image for disease diagnosis, may help the screen of the COVID-19. In this study, we aim to develop a radiomic signature to screen COVID-19 from CT images. We retrospectively collect 75 pneumonia patients from Beijing Youan Hospital, including 46 patients with COVID-19 and 29 other types of pneumonias. These patients are divided into training set (n = 50) and test set (n = 25) at random. We segment the lung lesions from the CT images, and extract 77 radiomic features from the lesions. Then unsupervised consensus clustering and multiple cross-validation are utilized to select the key features that are associated with the COVID-19. In the experiments, while twenty-three radiomic features are found to be highly associated with COVID-19, four key features are screened and used as the inputs of support vector machine to build the radiomic signature. We use area under the receiver operating characteristic curve (AUC) and calibration curve to assess the performance of our model. It yields AUCs of 0.862 and 0.826 in the training set and the test set respectively. We also perform the stratified analysis and find that its predictive ability is not affected by gender, age, chronic disease and degree of severity. In conclusion, we investigate the value of radiomics in screening COVID-19, and the experimental results suggest the radiomic signature could be a potential tool for diagnosis of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL